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Strong vibrational nonuniformity is achieved relatively easily for a number of 
molecules, for example, in a gas discharge or in the case of optical excitation. 
This nonuniformity can be used in molecular lasers (for example, a CO laser) as 
well as for carrying out chemical reactions. The problem of finding a vibra- 
tional distribution function under conditions of strong excitation has been 
solved in many papers (for example, see the review [i]) in large part numerical- 
ly. An approximate analytic theory which permits finding the steady distribu- 
tion function was constructed in [2-4]. Approximate analytic solutions of the 
problem of establishing the vibrational distribution function under conditions 
of variable pumping have been found in [5], and the applicability of the solu- 
tions obtained for the description of physical reality in the case of sufficient- 
ly powerful pumping is demonstrated~ The purpose of this paper is to clarify the 
lower limit with respect to pumping power of the applicability of the theory of 
[5]. The evolution of the distribution function over the vibrational levels in 
nitrogen is considered as an example. 

The complete set of nonsteady kinetic equations for the populations of individual vi- 
brational !~els has been solved numerically. The processes of vibrational exchange (V--V), 
energy relaxation into translational degrees of freedom (V--T processes), and excitation by 
an external source were taken into account (it was assumed that electrons excite the dis- 
charge). The approximation (v > v') 

~+~,~ = Q~o (~' + ~)(~' + t) ex~ ( -  8 w l v  - l), (1)  

was used for the rate constant of V--V-exchange, and 

P~+~,~ = P~o(V + 1) exp (%Tv), 

was used for the rate of V--T-relaxation, where Q~o and P~o are the constants for the first 
level, which depend on the gas temperature, and ~VV and ~VT are the temperature-dependent 
constants which characterize the dependence of V--V- and V--T-processes on the energy defect 
upon collision~ 

Two classes of solutions are considered separately. The first class describes the es- 
tablishment of the distribution function f(v) for rapid switching on of powerful pumping, and 
the second one describes the evolution of the distribution function after a brief pulsed ex- 
citation. The gas temperature was fixed in the numerical calculations, which can be easily 
justified in the region of relatively small pumpings of interest to us. The vibrational dis- 
tribution function obtained numerically was illustrated graphically in the coordinates in 
which the theoretical expression of [5] predicted a linear dependence. It was discovered 
that the regularities which follow from [5] give a good description of the total distribution 
function in some interval of vibrational numbers (Figs. 1 and 2). 

Analysis of the computational results will start from the case of the switching on of 
pumping which is constant in time. The final state asymptotically attained at long times is 
known [2-4]~ A plateau of the distribution function in the range of vibrational numbers 

1(@ = cl(v + ~), (2)  
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E 1 T t (the so-called Treanor number) Ex is the energy of characterizes it, where v* = 2AL T I 2 

the first vibrational quantum, AE is the anharmonicity energy, T is the gas temperature, T, 
is the effective temperature of the first excited level, c = ]/W/v, W is the pumping power 
per single molecule, ~ is the effective frequency of quasiresonant V--V-exchange (see [2-4]), 
which in the case of the approximation (i) is of the form 

-3 I v = ---~-4~E svvOxo [~ -~- �89 ( | -- T~-VFj2AE I-all, 

and v** is the number of the vibrational level for which the rate of V--V-exchange is compara- 
ble to the rate of V--T-relaxation [3]: 

= ln- Pi---~ " 

In the region before the plateau (v < v**) the distribution function is close to a "Treanor" 
one with vibrational temperature T,, i.e., f(v < v*) = fTr(V). The relation of the value 
of Tx to the pumping power W is determined from the equation [2-4] c = (v* + l) exp x 

z ( " - f l "  
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As has been found in [5], tne steady state (2) is established according to the law 

c i 
/(v) = (3) v + t  2 v ( t - - t o ) '  

upon the switching on of pumping, where to is some constant which is not determinable with- 
in the framework of the theory [5]. Evidently, at small times while the reserve of quanta 
in the lower vibrational levels is small, the evolution of the distribution function is de- 
termined mainly by V--V-exchange in the lower levels, the population of the high levels is 
negligible, and the role of quasiresonant exchange is small. The effects of anharmonicity 
in V--V-exchange and quasiresonant exchange become appreciable when the reserve of quanta per 
molecule approaches unity. Thus one can expect that to = I/W. Interpretation of the results 
of numerical calculations for the complete system of equations [see Fig. i, N = 1019 cm -3, 
T = 300~ a) WN = 570 W/cm 3, b) NW = 57 kW/cm3; the dashed curve is for Eq. (3)] permits 
obtaining an expression for to which is valid with good accuracy: 

= n B (Td/W, (4) 

where nB(T~) = (e E~/T~ -- I) -~. The establishment of the distribution functionoccursintwo 
stages. For t ~to the effective vibrational temperature of the lower levels increases, and 
there is no plateau. After establishment of the temperature of the lower levels, which is 
approximately equal to T~, an excitation wave described by the law (3) propagates (for the 
adopted values of the parameters v*/2vc <<nB(T:)/W ). The limiting reserve of quanta per 
molecule attainable in the steady state is equal [3, 4] (in the limit of weak pumping) to 

~t ~- c(v** - v*) + ~(r~). 

If c(v** -- v*) ~nB(T~) , then the first stage of energy accumulation in the lower levels oc- 
cupies most of the time, and the propagation of the excitation wave described by (3) occurs 
relatively rapidly. Naturally, the role of the plateau in the energetics of the molecule al- 
so turns out to be dominant. For the parameters of nitrogen (QI0/2V= 2.5.10 -18, 8vv = 6.8/]/~) 
the power at which cv** = nB(T~ ) in the case of T = 300~ and a gas density N = i0 ~9 cm -3 is 
equal to 600 W/cm 3. The possibility of dividing the establishment process into two stages 
is due to the pronounced dependence of the plateau level on the vibrational temperature of 
the lower levels c(T~). In addition to the distribution function over the vibrational levels, 
the rate of heating of the gas, which is related to the liberation of the defect energy in 
the process of V--V-exchange in the translational degree of freedom, was also found in the nu- 
merical calculation. An approximate explicit expression for the indicated heating rate 

qv,[  _ .~ ,~I: cv (t  - to) ( 5 )  
l,ln 3 E 1 

has been derived in [5]. 

Equation (5) is applicable as long as the excitation wave does not reach v**, where 
V--T-relaxation starts to play an important role. Comparison of the results~of a numerical 
calculation with the law (5) [Fig. 3, NW = 5.7 kW/cm 3, T = 300~ I) Q1o = Q1o, 6VV = ~VV, 

'3@o) 3;~ 2) Q10 = lOQ10, 8vv = 101'a6vv, Qlo = 2.5N( "10-1s (c-1), ~ v  = 6.8/]/T,  and d a s h e d  c u r v e s  -- t h e -  

o r y  [ 5 ] ]  shows v e r y  g o o d  q u a n t i t a t i v e  a g r e e m e n t  b e t w e e n  them f o r  to  d e f i n e d  by Eq. ( 4 ) .  

I t  i s  a l s o  e v i d e n t  f r o m  F i g .  3 t h a t  h e a t i n g  o f  t h e  g a s  due  t o  V--V-exchange  s t a r t s  t o  
occur somewhat earlier when t~to. It also follows from the form of the distribution func- 
tions over the vibrational levels (see Fig. la) that the situation is more complicated than 
outlined above in the case of a low pumping power. One should recall here that an approxi- 
mation of quasiresonant exchange has been taken as the basis of the analytic theory [2-5] in 
which "distant" exchange is neglected, in particular, the exchange of highly excited parti- 
cles with weakly excited ones. The criterion of this approximation for the steady state is 
of the form 114] 

Q~0exp (--6vvV*--E#r~)<<vc/v*. (6) 

An analytic theory of a steady distribution has been constructed in [6] for cases in which 
condition (6) is violated. The principal conclusion of this paper consists of the predic- 
tion of a dip in the distribution function f(v) at v = v*. Absolute inversion of the popu- 
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lations of the vibrational levels occurs in the interval v*~v~u 0. The results of our nu- 
merical calculation are in qualitative agreement with the conclusions of [6]; however, the 
estimate of vo according to the equations of [6] gives somewhat smaller values than in our 
calculation. Thus for a low degree of excitation nonresonant exchange can exert a signifi- 
cant effect on the populations of vibrational levels with v~.~vo. Since the rate of quasi- 
resonant exchange is proportional to the plateau level, an interval of time always exists in 
which the population in the end level increases mainly due to nonresonant exchange. The lib- 
eration of the energy defect during the exchange in this stage leads to the fact that 
qVV~0 for t <to (see Fig. 3). However, since vo differs little from v*, nonresonant ex- 
change makes a small contribution to qVV and is rapidly replaced for v~vo by quasiresonant 
exchange when Eq. (3) proves to be valid. 

Let us proceed to the analysis of the results of numerical calculations of the evolu- 
tion of the distribution function after pulsed excitation. A self-similar solution describ- 
ing the evolution of the average part of the distribution function over the vibrational lev- 
els and corresponding to a supply of quanta no has been obtained in [5]: 

( , I 
i [i2~ov ( t -  to)]l/4 /. 

/(v) = "~ ( t :  t o ) ~  V~-Ft  , 
(7) 

The quantity to is indeterminable within the framework of the theory [5], just as in the pre- 
ceding problem. The solution (7) describes an excitation wave propagating from the direc- 
tion of small v and attenuating due to outflow of the initial reserve of quanta no through 
many vibrational levels. Evidently, it is necessary for the validity of (7) that the reserve 
of quanta in a developed plateau be appreciably greater than the supply of quanta which re- 
mains frozen in the lower levels after the passage of the wave. The time to is physically 
due to V--V-exchange in the lower levels and the formation on this account of an excess popu- 
lation with respect to the Boltzmann one (it is assumed initially that there is a Boltzmann 
distribution with a temperature corresponding to the supply of quanta no). The task of our 
analysis is to determine to and the residual supply of quanta, which determines the late 
stage of evolution of the distribution function, during which Eq. (7) loses its validity. 
The numerical calculation shows that the dependence f(v) predicted by (7) is well ~ustified 
at the specified time [see Fig. 2, N = 1019 cm -3, a) no = 1.06, T = 50~ Qzo = 10Q~o, 
8vv = 10J/3 6vv; b) n 0 = 3.26, T ~ 300~ Q10 = Q~o, 5vv : 6vv] �9 We note the rapid establishment 
of the lower level v* characterizing the region of applicability of (7). The value of v* is 
practically constant in time. Assuming for the number v* found in this way that the distri- 
bution is close to a Treanor one for v ~-~v*, one can recover the value of the vibrational 
temperature T~v which characterizes the residual supply of quanta. The dependence of v* on 
the parameters can be estimated by joining the Treanor distribution 

fTr (v) ~ exp [--AE .... 
�9 Ttw)'-- ~'1 

to the function (7), from which we obtain 

v* = a ] / T / A E ,  (8) 
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ters and a = 2.3. 

as follows: 

where a is a numerical constant. Numerous calculations with variation of no, T, AE, Q~o, 
and 6VV have shown that the coefficient a in (8) does not depend on the indicated parame- 

this value of the constant, we find the value of Tlv(V*."~.E1 T-L'~,�9 Using ~ TIv - -  2AL' 

and the residual supply of quanta 

n v = [exp (4 .6] /AE/T)  - -  l ] - t  

I t  i s  e v i d e n t  t h a t  t h e  a p p l i c a b i l i t y  o f  t h e  a n a l y t i c  t h e o r y  [5] i s  l i m i t e d  f rom t h e  d i r e c -  
t i o n  of small degrees of excitation by the inequality no > n v. Numerical calculations con- 
firm the conclusions drawn, 

Just as in the previous problem, a quantity which is important for applications was al- 
so found numerically -- the fraction of energy liberated as heat in the process of evolution 
f(v) due to the defect associated with V--V-exchange. In [5] the formula 

i ~ 4 AE 
L'~'~o a qvvdt = "~"~% (3"o) ~2 [~(t  - t.)] ~ 

0 

( 9 )  

has been derived for this fraction. A comparison of the value found numerically '~lJ qvvdt) ~ \ 

with that obtained from Eq. (9) shows [Fig~ 4, N = 1019 cm -3, T = 50~ Q1o = 10Q1o, ~VV = 
10z/3~\~, l) no = 3.26, 2) no = 1.97, and 3) no = 1.06; the dashed curve refers to the cal- 
culation according to (9) and (i0)] that the temporal dependence (9) is satisfied with good 
accuracy. The time t) can be estimated from the formula 

to"~v*/2Vnv . (iO) 

whose validity was checked by us by varying such parameters as T, no, Qzo, and 8VV o The 
numerical factor differs from that found from (9) (with the replacement no + no -- n v taken 
into account) by approximately 15-20%. 

Thus the difference between the analytic solution for heat liberation and the exact so- 
lution proves to be greater in the case of pulsed excitation than in the problem of switch- 
ing on of the source. The discrepancy can be decreased by changing the value of ~, but the 
principles by which it is necessary to change it are not clear to us. 

We note in conclusion that detailed numerical calculations of the evolution of the vi- 
brational distribution function after switching on of the excitation source or after pulsed 
excitation have permitted formulating quantitative criteria for the applicability of the 
analytic theory of [5]. The true expression has been found for the delay time to starting 
from which the analytic solutions (3) and (7) are applicable. The residual supply of quanta 
frozen in the lower vibrational levels has been determined. It does not restrict the appli- 
cability of the approximate theory from the side of weak excitation. 
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